Get live statistics and analysis of qiyan.edge🦭🥊's profile on X / Twitter

在读大学生|不会代码的菜鸟|不合格的交易员|运气型选手| #Binance 广场创作者|#蓝鸟会成员 🕊️ | tg群:t.me/QiYan8

10k following16k followers

The Entrepreneur

qiyan.edge🦭🥊 is a passionate university student and a self-proclaimed rookie trader who thrives on turning 'luck' into strategic opportunities within the crypto and DeFi landscapes. Known for their hustle on Binance and active participation in the crypto creator community, they effortlessly blend deep technical insights with hands-on tactics to maximize gains. Their content is a treasure trove of detailed tutorials, market analyses, and innovative strategies that empower followers to navigate complex financial ecosystems.

Impressions
294.2k-25k
$55.16
Likes
2.2k-248
51%
Retweets
96-2
2%
Replies
1.7k-203
40%
Bookmarks
305-1
7%

Top users who interacted with qiyan.edge🦭🥊 over the last 14 days

@0xLongDC

R Ambassador of community @recallnet Web3 及加密原生、Meme 币、NFT、测试网、Depin

2 interactions
@0xYi666

日常分享📚️NFT收藏家🖼️GameFi玩家 🎮️撸毛养家👨‍👩‍👧‍👧 WEEX高返:bvfu MGBX全球大使:mgbx.com/register/uOhT0… irys-verify-0x58841c-0xYi 💌TG:t.me/web3Yi⛺🧙

1 interactions
@WeBTC_ETH

OnChain Degen | A real user of base & edgeX & Backpack & Infini | ex @TencentGlobal @Airbnb | NFA DYOR

1 interactions
@2298

投研|NFT归零选手|链游朝拜者|链上笨B钱包| DM For Promo 商务合作联系TG t.me/yundan2298

1 interactions
@qixiaoran0218

在校大学生 | Web3学习者 | #蓝鸟会成员 | #Binance 广场创作者

1 interactions
@Btcniumowang

不是天才也没关系,认清自己,要靠自己醒得早、干得狠。 |TG:@BTCniumowang 我们一起build!💜 |HTX DAO 上币观察员|Tron|USDD 2.0|Nubit| 大使

1 interactions
1 interactions
1 interactions
1 interactions
@zhangtingt5977

| 项目投研 | 合作宣发 | 承接KOL打包 |币安广场创作者 |所有推文不做投资建议|

1 interactions
@fan128168

|CandyDD=空投多多 |保持初心、从心出发 |嘴撸选手、不喜请喷 |#蓝鸟会 Tabi SBT💢

1 interactions
@FANZHIGE99

峰哥弟子|这是好事儿|web3非著名博主

1 interactions
@Xiaoxin031029

@MEXCZH 大使 邀請碼:39Kvq Weex80%高反:reurl.cc/axMqgQ 合約保險首選Websea: reurl.cc/LnnEze 推文內容僅代表個人思路 不構成投資建議 #藍鳥會成員 商務合作DM:t.me/x03310

1 interactions
@0xzixia

黄粱一梦,水下 A7 厚积待发,破浪翻身 知是行之始,行是知之成 ⚠️所有推文都不构成投资建议

1 interactions
@LQQMRINDA

Web3游民 | 追逐空投与DAO | 加密改变世界!| #BTC #NFT

1 interactions
@huangyu31085955

我不玩了,把钱还我! 💢I am a Tabizen!

1 interactions
@Exianshengde

✍️‖🔔 二级交易员‖ 投研报告创作者📈 双语中英文KOL 担任过多个项目大使 @espressosys & @espressofndn

1 interactions
@zhuren1992

Newb社区将继续秉承共享、共赢、创新的精神,携手成员共同开创更加辉煌的明天 Endless𒀭 mod:@EndlessProtocol RuneHero mod:@playrunehero

1 interactions
@0x0xyae

Content creator✍️ & Web3 boy 💥 ➡ Collabs DM t.me/uxyae

1 interactions
@shuiya850067504

来自浪浪山的小猪妖 @irys_xyz中文区大使 irys-verify-0x978e0f-shuiya850067504

1 interactions

For someone who calls themselves a 'luck-based player,' you’ve spent more hours strategizing and scripting automated setups than most pros do on actual trading! If luck had a PhD, you'd be the professor, but remember, even the best professor occasionally flunks a test.

Successfully built a loyal follower base around Binance and broader crypto communities by consistently delivering high-value educational content, amassing tens of thousands of views and hundreds of likes per tweet, and earning recognition as a key member of the #蓝鸟会 creator circle.

To demystify the intricate world of cryptocurrency trading and decentralized finance by sharing actionable strategies and insider knowledge, driving community growth while continuously refining personal trading skills through experimentation and engagement.

Believe in the power of practical learning, transparency, and community-driven success; they value smart risk-taking, constant adaptation, and leveraging technology to unlock new financial opportunities. They champion openness in sharing knowledge and tools, fostering collective prosperity in the digital economy while staying wary of pitfalls like over-leveraging and market hype.

Exceptional ability to break down complex DeFi mechanics into digestible, step-by-step strategies that appeal to both novices and experienced traders; high content output shows strong dedication and community building skills. They also harness tech tools like scripts and VPS setups to optimize trade automation and gain competitive edges.

Tends to overextend by managing multiple accounts and relying heavily on automation, which may introduce risks such as triggering anti-bot systems or audience fragmentation. Their self-deprecating humor on trading skills might undermine perceived credibility among some followers.

To amplify growth on X, focus on building a personal brand narrative that highlights resilience and learning journey rather than just tactical tips. Incorporate more interactive content like Q&A threads or live trading reviews, and leverage collaborations within crypto influencer networks (#蓝鸟会). Diversify tweet formats with short videos or visuals summarizing key strategies to boost retention and shareability.

Fun fact: Despite jokingly calling themselves an 'unqualified trader' and a 'luck-based player,' qiyan.edge has crafted some of the most comprehensive and high-impact tutorials on maximizing yields in complex DeFi protocols like OKX Boost and Perp DEX that have garnered massive views and engagement.

Top tweets of qiyan.edge🦭🥊

OKX #Boost 利润最大化教程 很多人觉得 OKX Boost 不值得刷?大错特错! 第一期的例子就很典型:当前 1 分积分大概能分到价值 65~70U 的 $LINEA,而实际磨损只有 3U 左右。换句话说——稳赚! 所以问题不是“要不要刷”,而是“怎么刷更合适”。 一、Boost 基础规则 •周期:15 天 •得分来源: 1)钱包余额(≥10U,建议放 100U+,更稳) 2)交易量(分档计分,最高 8 分) 代币分类: •一类:0 手续费(少) •二类:0.25% 手续费(主流币) •其他类:0.85% 手续费(杂币) → Boost 积分加成:分别是 0 / 0.25 / 1 → 理论上“其他类”刷起来更划算,但二类币更稳 二、利润测算 以第一期 $LINEA 为例(奖池 1.6 亿枚,价值约 450 万美金): •单分价值 ≈ 50~70U •成本:手续费+点差,约 2~3U •结论:性价比极高 不过注意 :并不是刷得越多赚得越多。 根据推算: •3-6 档最优(性价比最高) •超过 512 分后,边际利润开始下降 三、实操策略 1. 余额 保持 ≥100U 稳定币或主流币,避免被卡门槛。 2.交易量 •推荐刷 第 3-6 档(128~512 U/天,来回交易),性价 比最佳。 •其他类币(如 $PUMP 等小币)磨损更低,但有流动性风险; •二类币(ETH、USDT、BTC 等)更稳。 3.交易习惯 •不要集中在某一天刷完,拉平均值; •不建议一个设备多号,防女巫; •平时就顺手做些低买高卖,顺便把 Boost 刷了。 四、参与流程 1.下载并创建 OKX Wallet 插件,保存助记词 🔗chromewebstore.google.com/detail/okx-wal… 2.绑定邀请码(省 20% 手续费) 🔗 web3.okx.com/ul/joindex?ref…(邀请码BTCETH888) 3.钱包充值 ≥100U 稳定币 & Gas 4.找合适的代币刷量(建议 128~512 U 档位) 5.活动结束后,手动领取奖励 五、最后的建议 不要只看明面门槛(10U/32U),实际竞争会抬高门槛 多关注下一期规则是否调整(余额要求可能上调) 稳扎稳打比盲目大额更划算 一句话总结: OKX Boost 刷 3-6 档,余额 100U+,刷交易量,就是目前最优解。

136k

卧槽,Lighter的积分已经来到了1分100u,大家最近都在刷Perp dex,我还是强烈推荐大家去刷 @Lighter_xyz ,这融资阵容太强大了! 分享一下我的策略: 我的策略是多号+服务器上跑脚本+模拟真人操作流打法。 前期准备: 1. ads指纹浏览器:这个想必是个撸毛人都有 2.独立ip:独立ip主要是一个号配置一个ip防止女巫 3.vps服务器 4.Xterimal: 这是ssh工具,主要是搭建vps的 下载地址:xterminal.cn 5.脚本 我用的是 @yourQuantGuy 这位大佬的 脚本地址:github.com/your-quantguy/… 首先声明,用脚本会有女巫的风险,但是我们测试下来目前没有被女巫,另外一种就是对冲流打法,我只做分享。 教程如下:

47k

继Perp DEX之后,我觉得下一轮财富效应一定会在预测市场赛道中爆发! 预测市场有那些潜力项目,我整理了一下市面上有融资的和各链的预测市场项目,汇总了10大潜力项目! 1️⃣Polymarket @Polymarket 所属网络:Polygon 融资:总融资约27亿美元,估值90亿美元 推荐系数:★★★★★ Polymarket 是全球最大的去中心化预测市场,覆盖政治、体育及加密事件,月交易量已突破10亿美元。凭借与ICE(NYSE母公司)的合作,Polymarket正逐步稳固其市场领导地位。 2️⃣Kalshi @Kalshi 融资:总融资超5.15亿美元,估值50亿美元 推荐系数:★★★★ 作为CFTC监管的事件合约市场,Kalshi专注于政治、经济及体育事件的预测。其跨越140多个国家的全球扩展,以及与顶级投资者的合作,使其具备了巨大的成长潜力。 3️⃣Limitless @trylimitless 所属网络:Base 融资:总融资700万美元+社区承诺2亿美元 推荐系数:★★★★ Limitless 提供了一个基于Base链的全新预测市场平台,支持加密、科技和体育领域的预测。凭借Coinbase Ventures的支持和强大的资本背景,它成为了值得关注的潜力股。 4️⃣Numerai @numerai 融资:总融资1750万美元 推荐系数:★★★★ Numerai结合了AI与预测市场的优势,通过机器学习预测股票市场。它的量化平台吸引了大量数据科学家和投资者,是创新与技术的结合体。 5️⃣The Clearing Company @theclearingco 所属网络:EVM 融资:融资1500万美元 推荐系数:★★★★ 该平台致力于提供一个监管友好的链上预测市场,竞争对手为Kalshi和Polymarket,具备强大的团队背景和良好的市场前景。 6️⃣Talus Labs @Talus_Labs 所属网络:Sui 融资:总融资超1000万美元 推荐系数:★★★★ Talus Labs利用AI技术和去中心化的优势,构建了一个创新的预测市场平台,预计将在2026年Q1上线,值得期待。 7️⃣Topl @topl_protocol 推荐系数:★★★ Topl是一个专注于可持续性和供应链事件预测的区块链平台,具备强大背景支持,虽然融资信息未公开,但其潜力不容忽视。 8️⃣Opinion @opinionlabsxyz 所属网络:BSC 融资:融资500万美元 推荐系数:★★★ Opinion旨在构建一个社交网络内的观点市场,确保观点在数字领域得到认可。它的社交层次使得其独具吸引力,尤其对于想要参与数字讨论的用户。 9️⃣Hedgehog Markets @HedgehogMarket 所属网络:Solana 融资:融资300万美元 推荐系数:★★★ Hedgehog Markets 提供去中心化的预测市场,支持AMM和点对点投注。它的低融资门槛和Solana生态的优势使其成为新兴平台。 🔟Melee Markets @meleemarkets 所属网络:Solana 融资:融资300万美元 推荐系数:★★★ Melee Markets让任何人都能创建预测事件市场,其开放性和易用性使其成为一个值得关注的项目,特别适合喜欢定制化市场的用户。

39k

My HandsOn Experience with Vouch( @Vouch_io ): Verify Your Digital Identity in 60 Seconds, with Zero Privacy Leaks I recently had the chance to deeply explore Vouch.io, and I was completely captivated by its innovative approach to solving digital identity verification challenges. In simple terms, Vouch provides an incredibly fast and privacyfocused way for me to prove claims about my online presence—without ever sharing sensitive account details or personal data. What Does Vouch Do? At its core, Vouch is an intelligent identity verification platform. Its mission tackles a critical pain point in today’s digital world: establishing absolute trust between people, companies, software, and even devices. The goal? Eliminating risks around online identity and digital authenticity. Imagine needing to verify your social media influence, travel history, YouTube channel stats, or even certain financial details—but without handing over passwords or exposing private information. That’s where Vouch shines. My Personal Experience: Blazing Fast & PrivacyFirst 1. Downloading the App The first step was simple: I found Vouch’s mobile app in my device’s app store (direct links are usually available on their website or social media). 2. Choosing a Data Source The interface was intuitive. Vouch supports a wide range of platforms—I saw options like Instagram, Twitter/X, Uber, YouTube, and even Bank of America. I decided to verify a social media metric, like my follower count. 3. OneClick Verification Proof After selecting the platform and the specific data point, all it took was a single tap. Something magical happened: in under 60 seconds, the app generated a "verification proof." The entire process was seamless: No login required: I didn’t enter any usernames or passwords. Zero personal data shared (PII): No name, email, phone number, or other sensitive info was requested. No API hassle: Unlike traditional integrations, there was no need for complex developer setups. No screenshots or manual checks: No more worrying about faked screenshots—just a cryptographically secure proof. 4. Sharing the Proof The generated proof was encrypted, and I could easily share it with anyone who needed verification—proving my claims without exposing underlying data. The entire experience was unbelievably smooth, truly delivering on the promise of "click and verify." This combination of speed and privacy is rare in today’s digital landscape. The Secret Sauce: zkTLS / Webproofs Vouch achieves this through zkTLS (ZeroKnowledge Transport Layer Security), also known as Webproofs—a cuttingedge cryptographic protocol. In simple terms, it lets me prove a statement (e.g., "I have X followers") to a verifier without revealing any other information about my account. It’s a brilliant "proof without exposure" mechanism. Plus, I’ve heard the tech is designed to work offlinefirst, adding an extra layer of security. Why This Matters: Endless Use Cases For Individuals: Prove your social media reach to potential collaborators, verify activity for job applications, or confirm travel or video platform stats—all while keeping your data private. For Businesses: Verify user claims (income, engagement, qualifications) for fraud prevention or streamlined processes (like KYC) without handling sensitive PII—massively reducing compliance burdens (hello, GDPR!). Vouch’s LinkedIn page also hints at applications like digital car keys for shared mobility. Core Value: Whether for personal or enterprise use, Vouch’s real power lies in creating "frictionless trust." It removes the need for invasive account access or data sharing, replacing it with cryptographic proof. Vouch is elegantly reshaping how digital verification works. It perfectly balances speed (under 60 seconds), privacy (no logins, no PII), and usability (oneclick proof). After trying it myself, I’m convinced it’s a gamechanging solution for anyone who needs to prove their digital identity without compromising privacy. @EvangelistHQ #Vouch

1k

Spark的四大战略支柱——能否真正引领DeFi进入下一个黄金时代? Spark( @sparkdotfi )代币自2025年6月17日在币安等交易所上线后,其未来规划聚焦于代币经济深化、跨链生态扩展、资本效率优化及治理去中心化四大核心方向。 📊一、代币经济与分配机制 1. 长期释放与激励设计 总量与释放节奏:SPK总供应量为100亿枚,采用10年线性释放机制:前2年每年释放10亿枚,之后每2年减半,直至2035年分配完毕。其中65%通过流动性挖矿分配,用户质押SKY或稳定币(如USDS)可获取SPK。 空投策略: -Ignition空投(2025年6月启动):覆盖约5万早期用户,奖励基于历史对SparkLend的参与或特定稳定币持有行为。 -预挖空投(PreFarm):追溯奖励历史借款人,例如向DAI/USDS借款人倾斜80%的空投份额,以维持协议TVL稳定。 质押经济:SPK支持质押获取协议30%的分红收益,未来将引入锁仓引擎(Lockstake Engine),鼓励长期治理参与。 2. 交易所整合与流动性提升 Binance、KuCoin、Gate等交易所于2025年6月17日同步上线SPK,并提供多样化支持: Binance:支持现货、杠杆(3x)、期货(25x杠杆)及Earn质押,首日交易量超18亿美元。 KuCoin/Gate:集成量化交易工具(如网格交易、AI策略),降低用户操作门槛。 Binance: 现货/杠杆/期货/Earn质押/HODLer空投+多杠杆衍生品       KuCoin :现货+量化工具 、AI趋势追踪、马丁格尔策略       Gate:Launchpool/理财/交易赛 ,年化12%的USDT理财加成   ⛓️ 二、跨链扩展与生态整合 1. 多链部署与RWA深化 当前覆盖:已部署以太坊、Arbitrum、Base等6条链,管理资产超55亿美元。 2025年重点: -RWA(现实世界资产)配置:目标将超10亿美元资金投入BlackRock的BUIDL、Superstate等代币化国债产品,提升收益稳定性。 -Cosmos生态扩展:通过定制链优化跨链资产流转,解决以太坊高Gas费瓶颈。 2. 资本效率工具创新 Spark流动性层(SLL):动态调整资产配置: 牛市:资金倾斜至高收益DeFi协议(如Morpho、Ethena),APY可达1525%。 低收益期:转向RWA及CeFi货币基金,维持612%基础收益。 衍生品对冲:通过Pendle等协议锁定利率,例如PTUSDS固定利率达10%,吸引超5400万美元TVL。 🗳️三、治理去中心化路线图 1. 阶段性权力移交 短期(2025年内):SPK持有者可投票调整协议参数(如借贷利率、抵押品类型)。 中期(2026年后): -脱离MakerDAO主网,迁移至专用链NewChain独立运行。 -启动SubDAO代币互换机制,增强SPK与Maker生态代币(如NewGovToken)的协同性。 ⚠️ 四、风险与挑战 1. 监管压力: RWA配置可能面临SEC对代币化资产的证券属性审查(如BlackRock BUIDL争议)。 2. 市场竞争: 收益聚合赛道已有Ethena(TVL 27.1亿美元)、Morpho(FDV 15亿美元)等成熟协议,Spark需通过算法优势差异化竞争。 3. 代币抛压: 早期空投占比高(Ignition+预挖占流通量12%),叠加交易所期货杠杆放大波动,短期价格承压。 💎总结:核心路径与关键节点 Spark的未来规划围绕 收益可持续性、跨链互操作性、治理独立性 构建: 短期(2025年):消化空投抛压,推动RWA合规落地,优化SLL策略对抗市场波动。 中期(2026年):完成NewChain迁移,实现SubDAO完全自治,深化Cosmos生态整合。 长期价值锚定:若SLL的动态平衡能力与NewChain落地效果符合预期,Spark有望成为连接DeFi高收益与RWA低波动的核心中间层,重塑链上资本效率范式。 @cookiedotfun #CookieDAO #SparkFi #cookiefun

2k

距 $VULT 不到 10小时! 还剩几个小时进入 @vultisig 排行榜前 300 名 还有另外一种办法获得WL 那就是钱包里面有10万u 然后申请的前100名 当然这10万u问我 我也没有哈哈😂

11k

Sapien如何通过专业化数据标注与人工验证,成为AI模型训练的关键基石? Sapien(网站:[sapien.io])是一个专注于高质量数据标注和人工验证的平台,旨在为AI和机器学习模型提供可靠的训练数据。谈一下Sapien( @PlaySapien ) 对AI领域的主要贡献及其任务结构的总结: 1. 高质量数据标注 贡献: Sapien通过专业化的众包劳动力(包括领域专家和经过培训的标注员)为AI模型提供精准的标注数据,覆盖文本、图像、视频和音频等多种数据类型。 任务结构: 标注类型:包括分类、实体识别、语义分割、目标检测、语音转写等。 质量控制:通过多级审核、共识机制(多个标注员独立标注同一任务)和自动化验证工具确保数据质量。 领域适配:针对医疗、法律、自动驾驶等垂直领域提供定制化标注服务。 2. 人类反馈强化学习(RLHF) 贡献: Sapien为大型语言模型(如GPT、LLaMA等)的微调提供人类偏好数据,帮助模型对齐人类价值观和意图。 任务结构: 偏好排序:标注员对模型输出的多个回答进行质量排序。 生成评估:评估回答的流畅性、事实准确性、安全性等。 对抗性测试:设计边缘案例(edge cases)以发现模型缺陷。 3. 多模态数据处理 贡献: 支持跨模态(文本、图像、语音)数据的联合标注,推动多模态AI(如视觉语言模型)的发展。 任务结构: 跨模态关联:例如为图像生成描述性文本,或为视频添加时间戳标记。 复杂场景理解:标注自动驾驶中的3D点云数据或医疗影像中的病变区域。 4. 对抗性数据收集 贡献: 通过构建具有挑战性的测试案例,帮助提升AI模型的鲁棒性和安全性。 任务结构: 对抗性样本生成:标注员设计可能误导模型的输入(如模糊图像、歧义文本)。 红队测试(Red Teaming):模拟恶意用户行为以测试模型漏洞。 5. 本地化与全球化支持 贡献: 提供多语言数据标注服务,支持AI模型的全球化部署。 任务结构: 翻译与本地化:标注文化敏感的语境或方言。 语音数据收集:覆盖小众语言和口音。 6. 透明与合规的数据治理 贡献: 确保数据标注符合伦理和隐私法规(如GDPR),减少AI偏见。 任务结构: 去标识化处理:移除敏感个人信息。 偏见检测:标注员识别并标记可能带有偏见的数据。 技术架构与流程 Sapien的任务流程通常包括以下步骤: 1. 需求分析:与客户共同定义标注规则和标准。 2. 任务分发:通过平台将任务分配给合适的标注员(可能按专业领域筛选)。 3. 质量监控:实时监控标注结果,使用自动化工具(如一致性检查)和人工审核。 4. 交付与迭代:提供结构化数据集(如JSON、COCO格式)并支持后续优化。 总结 Sapien的核心价值在于通过人类智能的规模化组织,解决AI训练中的数据瓶颈问题,尤其在需要高精度或领域知识的场景中。其结构化任务设计和严格质量控制使其成为许多AI公司的重要数据合作伙伴。 -------------------------------------------------------- Sap Sapien's Contributions to AI and Task Structure Summary @PlaySapien (sapien.io )is a platform focused on high-quality data annotation and human verification, aimed at providing reliable training data for AI and machine learning models. Below is a summary of Sapien’s key contributions to the AI field and its task structures: 1. High-Quality Data Annotation Contribution: Sapien delivers precise annotated data for AI models through a specialized crowdsourced workforce, including domain experts and trained annotators, covering diverse data types such as text, images, videos, and audio. Task Structure: Annotation Types: Includes classification, entity recognition, semantic segmentation, object detection, speech transcription, etc. Quality Control: Ensures data quality through multi-level reviews, consensus mechanisms (multiple annotators independently label the same task), and automated validation tools. Domain Adaptation: Provides customized annotation services for vertical industries like healthcare, legal, and autonomous driving. 2. Reinforcement Learning from Human Feedback (RLHF) Contribution: Sapien supplies human preference data for fine-tuning large language models (e.g., GPT, LLaMA), helping align models with human values and intentions. Task Structure: Preference Ranking: Annotators rank the quality of multiple model outputs. Response Evaluation: Assesses fluency, factual accuracy, and safety of responses. Adversarial Testing: Designs edge cases to identify model weaknesses. 3. Multimodal Data Processing Contribution: Supports joint annotation of cross-modal data (text, images, speech), advancing the development of multimodal AI (e.g., vision-language models). Task Structure: Cross-Modal Association: For example, generating descriptive text for images or adding timestamps to videos. Complex Scene Understanding: Annotates 3D point cloud data for autonomous driving or lesion areas in medical imaging. 4. Adversarial Data Collection Contribution: Enhances AI model robustness and safety by creating challenging test cases. Task Structure: Adversarial Sample Generation: Annotators design inputs that may mislead models (e.g., ambiguous text, blurry images). Red Teaming: Simulates malicious user behavior to test model vulnerabilities. 5. Localization and Globalization Support Contribution: Offers multilingual data annotation services to support the global deployment of AI models. Task Structure: Translation and Localization: Annotates culturally sensitive contexts or dialects. Speech Data Collection: Covers low-resource languages and accents. 6. Transparent and Compliant Data Governance Contribution: Ensures data annotation complies with ethical and privacy regulations (e.g., GDPR) and mitigates AI biases. Task Structure: De-identification: Removes sensitive personal information. Bias Detection: Annotators identify and flag potentially biased data. Technical Architecture and Workflow Sapien’s task workflow typically includes the following steps: Requirements Analysis: Collaborates with clients to define annotation rules and standards. Task Distribution: Assigns tasks to suitable annotators (potentially filtered by domain expertise) via the platform. Quality Monitoring: Tracks annotation results in real-time using automated tools (e.g., consistency checks) and human reviews. Delivery and Iteration: Provides structured datasets (e.g., JSON, COCO formats) and supports subsequent optimizations. Summary Sapien’s core value lies in its scalable organization of human intelligence to address data bottlenecks in AI training, particularly in scenarios requiring high precision or domain expertise. Its structured task design and rigorous quality control make it a key data partner for many AI companies . @cookiedotfun #CookieDAO #Sapien #SPN #PlaySapien

2k

Decentralizing AI's Data Supply Chain: How Sapien is Building the Global Knowledge Layer for Trusted AI Training --The rebranding from @PlaySapien to @JoinSapien signifies the project's strategic evolution from a product-experience focus to an ecosystem-co-creation orientation—where "Play" emphasized tool functionality, "Join" highlights protocol-level participation, deeply aligning with core values of on-chain governance and contributor ownership. ✅Sapien's Solution Framework 1. Decentralized Data Production Protocol Core Innovation: A blockchainbased global knowledge network converting human expertise into structured AI training data at scale. Operational Mechanics: SkillMatching: Contributors undertake annotation, validation, and specialized AI tasks aligned with their expertise. TwoLayer Quality Control: Peer validation + onchain reputation auditing. Tokenized Incentives: Tiered reward structure (entrylevel → premium tasks) with staking mechanisms for yield amplification. 2. OnChain Trust Architecture Transparency Enforcement: Immutable recording of contributions, reputation, and payments. Structural Advantages: Historical contributor performance tracking Automated smart contract penalties/rewards Elimination of intermediary fees (2040% in traditional platforms) Protocol governance rights via token ownership 3. Token Economics ($SAPIEN) Staking Incentives:Priority task access & reward boosts Reputation System:Reputation tiers gate task levels Governance Rights:Parameter voting for token holders Value Conversion:1:1 redemption of alpha points at TGE ✅Commercial Validation Scale Proof: 100M+ AI tasks completed by 1.2M+ contributors during alpha. Enterprise Adoption: Serving Amazon, Midjourney, UN, and Toyota – validating enterprisegrade demand. Technical Evolution: Web2 Data Operations- > Hybrid Transition Architecture-> Full OnChain Protocol ✅Strategic Positioning 1. Reengineering Data Supply Chains Tackles legacy pain points: inefficient subcontracting, quality erosion, and unfair labor compensation in traditional data labeling. 2. Global Knowledge Liquidity Mobilizes localized expertise from emerging markets (Nairobi, Manila, etc.) to solve AI's longtail data needs. 3. AI Data Infrastructure Play Aims to become the foundational middleware for trustworthy AI training data. ✅Roadmap 2025 :Mainnet Launch • Token TGE • Enterprise Integrations 2026:Protocol Governance • Network Effects • Industry Standardization ✅Key Challenges Scalable Quality Assurance: Onchain verification under 100M+ task throughput Tokenomic Stability: Mitigating speculative staking behaviors Regulatory Compliance: Crossborder data/labor frameworks (GDPR, digital labor laws) ✅Conclusion Sapien pioneers blockchainenabled restructuring of AI’s data supply chain: Productivity Shift: Unlocks global latent human expertise for AI training. Ownership Revolution: Transforms contributors from labor to protocol owners. Infrastructure Value: Creates an antifragile, scalable data backbone for AGI development. Sapien represents a DePIN transformation of AI data supply chains. Its success hinges on achieving superior marginal cost structures versus centralized alternatives while maintaining verifiable data quality – positioning it as critical infrastructure for nextgeneration AI. @cookiedotfun @JoinSapien #CookieDAO #Sapien #SPN #SapienAI #JoinSapien

1k

如何参与融资3300万美元的项目 ---Kite AI ? Kite AI 是一个专注于 AI 支付区块链的项目,背后有 PayPal Ventures 和 General Catalyst 等投资支持。它旨在打造代理互联网(agentic internet),为 AI 代理提供身份验证、权限治理和即时支付等核心功能。 1.官方信息 官推 @GoKiteAI@Kite_Frens_Eco 官方 Discord:discord.com/invite/kiteai 2.参与测试网 传送门:testnet.gokite.ai 3. 参与内容创作(UGC 活动):获得 Wind Runner SBT Kite AI 提供了 “Wind Runner” 计划,旨在奖励高质量、原创的内容创作者。通过创建与 Kite AI 相关的内容,你可以获得 SBT(分为三个层级)和其他奖励。 记得提交表单:kiteai.typeform.com/WindRunner 4. 参与开发者活动 传送门:openbuild.xyz

5k

如何参与 @Polymarket ——一个去中心化的预测市场平台?七步教会你完整教程 ▍第一步:创建账户并连接钱包 1、注册:访问 polymarket.com 创建账户。 2、连接钱包。 3、购买 USDC:通过 MoonPay 或交易所购买 USDC。 ▍第二步:存入资金并开始交易 1、存入资金:将 USDC 存入你的 Polymarket 钱包中,注意平台支持 Polygon 网络的存款。 2、提取资金:你可以随时将资金从钱包提取出来,没有提取限额。 ▍第三步:浏览市场并进行交易 1、浏览市场:选择一个你感兴趣的市场。例如,你可以参与“特朗普是否能赢得 2024 年总统选举?”之类的市场。 2、买入股份:点击你想投注的选项(如“是”或“否”),然后输入你希望购买的金额。股份的价格反映了事件发生的概率。例如,价格为 0.60 USDC 时,表示你认为事件发生的概率为 60%。 3、卖出股份:你可以随时卖出你的股份,无需等到市场结算。卖出时,你可以锁定利润或者止损。 4、限价单:如果你希望避免价格波动,可以设置限价单来购买或出售股份。 ▍第四步:市场结算 1、事件结束后结算:当事件结束时,平台会根据可靠的来源(如新闻机构或 API)来结算市场。如果你买入的是正确的股份,你将获得 1 USDC;如果买入错误的股份,你将损失投资。 2、争议处理:如果对结算结果存在争议,可以通过 UMA(预言机)提出异议进行处理。 ▍第五步:交易策略和风险管理 Polymarket 的交易策略主要依赖于信息优势和风险控制。以下是几种常见的交易策略: 1、基于知识获利:如果你认为某个事件发生的概率高于当前市场价格(例如,“是”股份的价格是 0.18 USDC,而你估计概率 > 18%),可以购买股份并持有直到事件结算。很多交易者通过新闻、民调等获取信息来判断事件的可能性。 2、对冲(Hedging):你可以在相关市场中买入相反的结果来平衡风险。例如,买入“特朗普胜选”并同时卖出“拜登支持率 > 45%”,这样即使某个结果不准确,你也能通过其他市场的波动获得盈利。 3、套利(Arbitrage):你可以在 Polymarket 和其他平台(如 @Kalshi )之间进行套利,利用价格差异来赚钱。这需要你快速反应并准确判断市场定价是否存在错误。 ▍第六步:利用第三方工具提升交易效率 Polymarket 生态系统中有很多第三方工具,可以帮助你更好地分析市场,设立警报以及自动化交易。 1、Polymarket Analytics @poly_data 网址:polymarketanalytics.com/markets?market… 功能:实时监控市场热度和价格,分析交易者表现,支持不同市场对比。 特点:数据丰富,适合研究市场趋势。 2、 Blockworks Research @blockworksres 网址:blockworks.com/analytics/poly… 功能:聚合 Polymarket 的链上数据,如交易量和活跃钱包,提供宏观趋势图表。 特点:数据全面,可视化效果好,但部分数据需要订阅。 3、 Hashdive @hash_dive 网址:hashdive.com 功能:分析热门市场流动性、成交量和 AI 概率预测,提供智能评分。 特点:简洁的界面,适合数据驱动的交易者。 4、 Polymarket @PolymarketEco 网址:Polymark.et 功能:汇总 Polymarket 生态中的所有工具,提供全面导航。 特点:为新手提供了一个了解生态的入口。 ▍第七步:实用技巧和高级策略 1、低风险套利:适合新手的一种策略是进行低风险的套利。选择一些长期事件(例如 2028 年总统选举),买入一个选项的股份,然后通过拆分份额获得 Polymarket 奖励(年化 4%)。这是一个低风险、零猜测方向的策略。 2、反向扫尾盘:当市场即将结束时,可以低价买入某个事件的股份(例如,“10 月 ETH 是否会达到 8k”),然后挂单卖出,赚取差价。 3、限制资金和风险管理:为了降低风险,建议每个市场的投入不超过总资金的 5%。确保资金分配合理,并设定止盈点(例如 +20% 时出货)。 4、利用预测工具:使用如 Polymarket Analytics 和 Hashdive 等工具,帮助你做出更有数据支撑的决

6k

请注意!请注意!请注意! 这里有一些@vultisig打新的细节 $VULT CA:0xb788144DF611029C60b859DF47e79B7726C4DEBa 链:ETH 主网 接受资产:USDC Uniswap Vultisig 专用网站: launch.vultisig.com/swap 10 月 27 日 8:00 UTC:Kaito Snapshot(前 300 名获得 WL) 10 月 27 日 12:00 UTC:WL 阶段开启(第 1 小时:最高买入价 1000 美元,第 2-24 小时:最高买入价 10000 美元) 10 月 28 日 12:00 UTC: $VULT公开发布 起始资金为 300 万美元,以 FCFS 方式启动(购买的人越多 = 价格上涨越多) 同时榜上的别忘记去talk.vultisig.com绑定钱包 绑定钱包之后验证会出现 “WL Ready”的标识

20k

Snaps +0.21 Ranking 186 I'm very grateful that you have added points for me again @cookiedotfun ------------------------------------------------------- The Loyalty Revolution in DeFi: How Spark( @sparkdotfi ) Overdrive Reinvents User Engagement Through Airdrop Economics While Challenging Traditional Financial Trust Paradigms ✅I. Overdrive Airdrop Phase 2: Mechanism Design & Participation Strategy 1. Core Objective: Activating LongTerm Stakers Unclaimed Airdrop Redistribution: Reallocates unclaimed tokens from Phase 1 (Ignition) to incentivize sustained SPK staking. AntiDumping Mechanism: 14day lockup period (July 29  August 12 UTC) mitigates postlisting sell pressure. 2. Participation Rules Deep Dive Critical Constraints: Eligibility limited exclusively to Ignitionairdropped SPK Stablecoin holdings only amplify unit counts without altering staked SPK 3. Risk Hedging Architecture Compressed Timeframe: 14day window minimizes market volatility exposure Zero Cooldown: Instant unstaking permitted (with forfeited rewards) balances flexibility and protocol stickiness > This mechanism counters "airdrop farming" by converting mercenary users into ecosystem contributors while curbing circulating supply inflation. ✅II. Spark Protocol Essence: DeFi Native vs. Traditional Banking 1. Foundational Logic: Code Trust > Institutional Trust 2. Regulatory Arbitrage & Compliance Boundaries Banks: Bound by Fed capital requirements + mandatory KYC/AML Spark: No banking licenses across jurisdictions Proactive US user geoblocking (2023) to evade SEC scrutiny Explicit disclaimers at `spark.fi/mica`: "Nondeposit · No principal protection · Uninsured" 3. Yield Generation: Algorithmic Markets vs. Administered Rates Bank Rates: Central bank benchmarks + institutional spreads Spark's DSR: Simplified Rate Model (SparkLend Core) function calculateDSR() public view returns (uint256) { uint256 utilization = totalBorrows / totalDeposits; return utilization > 0.8 ? baseRate + 5% : baseRate; } Historical case: EDSR peaked at 8% (2023) before arbitragedriven normalization to 5% 4. Governance: Shareholders vs. Tokenholders Bank Decisions: Board resolutions + shareweighted voting Spark Upgrades: Onchain SPK holder voting MakerDAO's veto power—exposing SubDAO security dependencies ✅III. DeFi's Irreversible Paradigm Shift Spark's Overdrive relock strategy epitomizes converting liquidity subsidies into protocol loyalty, while its nonbank nature reveals DeFi's core disruption: > "When yield stems from mathematicallyverifiable code—not institutional credibility—finance evolves from trusting intermediaries to trusting opensource infrastructure." Yet regulatory arbitrage faces sunset: MiCA compliance may demand offchain legal entities, though Spark's chainnative operational core remains immutable. #CookieDAO #SparkFi #cookiefun #Spark

2k

A大按头嘴的项目——— @edgeX_exchange 奖励:2000 万个edgeX meme + 50 万美元 USDT + 3 个 EpicSer NFT。 时间:11月3号 ~ 12月3号 推特ID添加 “.edge🦭” 要求: 1、提交edgeX UID 传送门:pro.edgex.exchange/referral/97546… 2、加入DC和TG并关注官推并且截图 提交表格:docs.google.com/forms/d/e/1FAI…

2k

Value Reconstruction in Distributed Systems: The Convergence of Spark( @sparkdotfi )'s Technical Architecture and Financial Engineering > When traditional distributed systems deeply integrate with financial engineering, Spark ceases to be merely a computational framework or a DeFi protocol—it becomes a crossdomain synergy engine redefining data value and capital efficiency. At the intersection of big data and blockchain, Spark is quietly orchestrating a dual revolution: it is both a technological innovator in distributed computing and a paradigm disruptor in decentralized finance. ✅I. Paradigm Shift in Technical Architecture: From Computational Speed to Intelligent Resource Allocation 1. HighDimensional NoiseResistant Optimization: The Engineering Philosophy of NoRTune Spark faces a "highdimensional maze" problem—traditional tuning of 150+ dynamic configuration parameters resembles "blind men feeling an elephant," constrained by: High sample requirements Dimensionality selection challenges Performance noise interference The Korean team’s NoRTune framework breaks through with two innovations: Nonlinear Subspace Bayesian Optimization (NSBO): Maps 150+ dimensions to a 20D subspace via random embeddings, eliminating dependency on target dimensions. In WordCount benchmarks, sample efficiency improves 3.8x. NoiseResistant Acquisition Function: An enhanced qExpected Improvement (qEI) combined with quantile regression increases configuration stability by 62%, effectively distinguishing real performance from noise fluctuations. This breakthrough overcomes the "curse of dimensionality" in Bayesian optimization, enabling adaptive exploration while reducing dimensions—a plugandplay tuning paradigm for cloud computing. 2. Isolated Debt Positions & eMode Overclocking: Embedding FinancialGrade Risk Control Spark Protocol’s core security innovation lies in its risk contagion prevention algorithm: Independent borrowing pools for each collateral asset (e.g., WBTC, ETH). If a pool’s collateral ratio falls below 120%, crosspool borrowing is automatically paused, improving system stability by 300%. eMode leveraged borrowing uses Balancer TWAP + Chainlink dual oracles, enabling 97% loantovalue (LTV) ratios for correlated assets (e.g., ETH/wstETH)—a 53% improvement over Aave V3. This modular risk isolation architecture prevents systemic failures (e.g., LUNAstyle cascading liquidations), embedding actuarial rigor into distributed systems. ✅II. OnChain Financial Engineering: Building ClosedLoop Capital Efficiency 1. The Deterministic Revolution in Stablecoin Yields Traditional DeFi stablecoin yields suffer from volatile interest rates and custodial risks. Spark’s solution: ERC4626 Savings Tokens (sUSDS): Fixedyield mechanisms backed by: Cryptocollateralized loan fees U.S. Treasury investments Crossprotocol liquidity allocation SkyLink Liquidity Layer (SLL): Automated crosschain routing (Base, Arbitrum) via Circle’s CCTP ensures deep liquidity. This transforms stablecoin yields from speculative market behavior into predictable protocollevel infrastructure, improving task efficiency by 14.13% in HiBench tests. 2. Deflationary Tokenomics: A ThreeLayer Burn Mechanism SPK’s tokenomics counteract airdrop inflation via: Fee Burning: 25% of platform revenue buys back and burns SPK (~8% annual reduction at $37M daily volume). Utility Locking: SPK holders get 60% fee discounts; stakers earn 75% of protocol revenue (~7% APY). Governance Power: Voting rights cover critical parameters (e.g., new collateral types). This model directly addresses airdrop flaws—value leakage to passive holders—by tightly coupling token value with protocol activity. ✅III. CrossDomain Synergy: Challenges and Prospects 1. The TechFinance Validation Dilemma Latency Mismatch: Distributed computing relies on RDD replay (minutes), while DeFi liquidations require subsecond responses. Noise Definition Clash: Computational noise (I/O jitter, GC pauses) ≠ financial noise (oracle deviations, flash loan attacks). 2. Regulatory Tech (RegTech) Adaptation Under EU’s MiCA, derivative protocols must adjust margin requirements. Spark must build a dynamic compliance layer: Plugandplay KYC modules Realtime risk exposure dashboards Regulatory sandbox interfaces 3. AIDriven Capital Efficiency Flywheel Spark is exploring MLoptimized yield routing: 2025 Q4 Liquidity Aggregator: Reinforcement learning dynamically allocates capital across Aave, Morpho, etc. NoRTune Expansion: Extends parameter tuning from compute resources to interest rate curves. ✅A New Paradigm for Distributed Value Exchange Spark’s dualtrack evolution reveals a deeper trend: distributed systems are evolving from "data processors" into "value exchange infrastructures." Its core innovation lies in three convergences: 1. Temporal Fusion: Batch processing (RDD fault tolerance) + streaming (realtime liquidations). 2. Spatial Fusion: Compute optimization (NoRTune) + capital optimization (SLL). 3. Risk Fusion: Technical noise suppression (qEI) + financial risk isolation (independent pools). Spark’s future hinges on balancing technical rigor with financial innovation. If it succeeds in crossvalidation, regulatory adaptation, and AI synergy, it could become the first "computeasfinance" protocol—where data processing doesn’t just move information, but redefines capital efficiency. > When Korean engineers debug NoRTune’s Bayesian sampling, they don’t realize the same code optimizes milliondollar stablecoin rates on Base. When MakerDAO designs isolated vaults, they don’t foresee their risk logic reshaping Spark’s parameter tuning—yet in this collision of tech and finance, the future of value flow is being rewritten. --------------------------------------------------- 分布式系统的价值重构:Spark协议的技术架构与金融工程融合之路 > 当传统分布式系统与金融工程深度耦合,Spark不再仅是计算框架或DeFi协议,而成为重构数据价值与资本效率的跨领域协同引擎。 在大数据与区块链的交叉地带,Spark正悄然进行一场双重革命:它既是分布式计算框架的技术革新者,也是去中心化金融的范式颠覆者。 ✅一、技术架构的范式突破:从计算加速到资源智能配置 1. 高维抗噪调优:NoRTune框架的工程哲学 Spark面临的“高维迷宫”困境——超过150个动态配置参数的传统调优如同“盲人摸象”,样本需求高、维度选择难、性能噪声干扰形成三重约束。韩国团队提出的NoRTune框架通过两大创新破局: 子空间贝叶斯优化(NSBO):利用随机嵌入技术将150+维参数映射到20维子空间,避免传统方法对目标维度的依赖,在WordCount等测试中样本效率提升3.8倍 抗噪采集函数:改进的qEI(Expected Improvement)函数结合分位数回归,使配置建议稳定性提升62%,有效区分真实性能与噪声波动 这一设计突破贝叶斯优化的维度诅咒,实现“边探索边降维”的自适应过程,为云计算环境提供开箱即用的调优范式。 2. 隔离借贷仓与eMode超频:金融级风控植入计算内核 Spark Protocol的核心安全创新在于风险传染阻断算法: 每种抵押资产(如WBTC、ETH)拥有独立借贷池,当特定池抵押率跌破120%阈值时,自动暂停跨池组合质押功能,将系统稳定性提升300% eMode超频杠杆通过Balancer TWAP与Chainlink双预言机校验,允许在关联资产(如ETH/wstETH)上实现最高97%抵押率,较Aave V3提升53% 这种模块化风险隔离架构,使Spark避免类似LUNA崩盘的全局清算风险,将金融工程的精算思维植入分布式系统底层。 ✅二、金融工程的链上实现:构建资本效率的闭环系统 1. 稳定币收益的确定性革命 传统DeFi稳定币收益面临根本矛盾:浮动利率的不可预测性与中心化托管的风险性。Spark的破局点在于: ERC4626储蓄代币(sUSDS):基于Sky治理设定的稳定收益机制,收益来源包括加密货币抵押贷款手续费、美国国债投资及跨协议流动性配置 流动性层(SLL)自动化跨链路由:通过SkyLink桥接Base和Arbitrum等网络,实现多链收益同频化,USDC流动性采用Circle跨链协议确保深度流动性 这一设计将稳定币收益从市场投机行为转化为可预测的协议级基础设施,在HiBench测试中任务效率最高提升14.13%。 2. 代币经济的通缩引擎设计 SPK代币经济模型通过三层消耗机制对抗空投通胀: 手续费销毁:25%平台收入用于回购销毁,日均3700万美元交易量下年销毁量达流通量8% 效用绑定:持币享受60%交易费折扣,质押分享75%协议收益(年化约7%) 治理赋权:投票权覆盖新增抵押资产类型等关键参数调整 这种设计直击空投分发模式的核心痛点——价值外流至被动持有者,通过强消耗场景将代币价值与协议活性深度绑定。 ✅三、跨领域协同的挑战与前景:当技术架构遇见金融工程 1. 技术金融的交叉验证困境 延迟敏感性错配:分布式计算容错依赖RDD重放机制(分钟级),而DeFi清算需秒级响应,时态鸿沟亟待弥合 噪声定义冲突:计算性能噪声(I/O波动、GC停顿)与金融噪声(预言机偏差、闪电贷攻击)需差异化处理框架 2. 监管科技(RegTech)适配 欧盟MiCA法案对衍生品协议的保证金披露要求,可能强制调整eMode杠杆参数。Spark需构建动态合规层: 可插拔KYC模块 实时风险敞口仪表盘 监管沙盒交互接口 3. AI驱动的资本效率飞轮 Spark正探索机器学习优化跨协议收益路径: 2025年Q4上线流动性聚合器,通过强化学习动态平衡Aave、Morpho等协议的资本配置 基于NoRTune框架的扩展,将参数调优从计算资源延伸至利率曲线校准 ✅分布式价值交换的新范式 Spark的技术金融双轨演进揭示了一个更深层趋势:分布式系统正从“数据处理工具”蜕变为“价值交换基础设施”。其核心创新在于三重融合: 时间维度融合:批处理(RDD容错)与流处理(实时清算)的统一架构 空间维度融合:计算资源优化(NoRTune)与金融资源优化(SLL)的同构映射 风险维度融合:技术噪声抑制(qEI函数)与金融风险隔离(独立借贷池)的协同设计 未来Spark的成败将取决于其能否维持技术严谨性与金融创新性的精密平衡。若能在跨域验证、监管适配、AI协同等方向持续突破,或将成为首个实现“计算即金融”的分布式价值协议——数据处理不只是信息的搬运,更是资本效率的重新定义。 > 当韩国工程师调试NoRTune的贝叶斯采样算法时,不会想到同一行代码正优化着Base链上百万美元的稳定币利率;而MakerDAO团队设计隔离借贷仓时,亦未预料其风控逻辑将改写Spark集群的参数调优哲学——技术架构与金融工程的碰撞,终将重塑价值的流动轨迹。 @cookiedotfun #CookieDAO #SparkFi #cookiefun #Spark

1k

提醒一下!FightID创作者计划马上结束!这里有一些要求要注意! @JoinFightID@HoloworldAI 上的打新最终超募122倍! 接下来是创作者的打新,单独的通道不用跟他们抢额度!但是有一些要求。 1、记得在推特昵称后面加一个🥊 2、tag:@JoinFightID 和@HoloworldAI 3、提交截止日期:11月1日下午2点(UTC时间) 4、记得kyc

10k

Sapien is pioneering a decentralized protocol that bridges human expertise with AI development through innovative tokenomics and blockchain technology. ✅1. Core Product: Decentralized Data Labeling Platform HumanDriven AI Training: Sapien connects global experts with enterprises needing highquality AI training data. Contributors perform tasks like image annotation or text classification, earning tokens for validated work . Gamified Participation: Features dynamic task systems, leaderboards, and NFTbased rewards to boost engagement and data quality . RealWorld Impact: -Accuracy: Achieves 99% data accuracy for clients like Alibaba and Midjourney . -Scale: 155,000+ contributors across 110+ countries, processing 2M+ data points . ✅2. Protocol Layer: BlockchainPowered Infrastructure MultiChain Integration: Built on Coinbase's Base L2 for lowcost Ethereum transactions . Partners with Matic Network (Polygon) to reduce costs/speeds by 100x . Key Technical Components: Token Incentives: Uses SPN tokens and stablecoins to reward contributors, with a PointstoToken conversion system . Reputation System: Onchain credentials track contributor expertise, enabling access to highervalue tasks . Forced Withdrawals: Ensures users can reclaim assets to L1 during emergencies, enhancing security . ✅3. Solving RealWorld AI Industry Problems Labor Shortages & Costs: Problem: 90% of AI companies face skilled annotator shortages; labeling costs often exceed $100k/project . Solution: Sapien's global talent pool reduces costs by 5070% while scaling on demand . Data Scarcity in Niche Domains: Problem: Medical/legal AI lacks expertvalidated datasets. Solution: Incentivizes domain experts. Centralization Risks: Problem: Tech giants monopolize AI data, leading to bias. Solution: Permissionless protocol ensures open access and diversity . ✅4. Tokenomics & Ecosystem Growth SPN Token Utility: Rewards for data labeling and referrals. Governance voting for protocol upgrades. Staking for premium task access . Strategic Partnerships: Worldcoin/Yield Guild Games: Expand contributor networks . Layer 2 Ecosystems: Base and Matic enable microtransactions for global payouts . Growth Metrics: 50% monthly user growth; $10.5M seed funding (Variant Fund lead) . ✅5. Future Vision & Challenges Roadmap: Launching "Data Foundry" for enterprise API access; expanding into RLHF (human feedback for LLMs) . Risks: Regulatory uncertainty for global crypto payments; competition from centralized AI labs Impact Potential: Democratizes AI development, enabling startups to compete with tech giants in model training . Sapien exemplifies how cryptonative systems can solve critical AI bottlenecks—turning fragmented human expertise into scalable, highintegrity data pipelines. Its success hinges on balancing token incentives with realworld utility to sustain a decentralized knowledge economy . @cookiedotfun @JoinSapien #CookieDAO #Sapien #SPN #SapienAI #JoinSapien

891

Most engaged tweets of qiyan.edge🦭🥊

距 $VULT 不到 10小时! 还剩几个小时进入 @vultisig 排行榜前 300 名 还有另外一种办法获得WL 那就是钱包里面有10万u 然后申请的前100名 当然这10万u问我 我也没有哈哈😂

11k

OKX #Boost 利润最大化教程 很多人觉得 OKX Boost 不值得刷?大错特错! 第一期的例子就很典型:当前 1 分积分大概能分到价值 65~70U 的 $LINEA,而实际磨损只有 3U 左右。换句话说——稳赚! 所以问题不是“要不要刷”,而是“怎么刷更合适”。 一、Boost 基础规则 •周期:15 天 •得分来源: 1)钱包余额(≥10U,建议放 100U+,更稳) 2)交易量(分档计分,最高 8 分) 代币分类: •一类:0 手续费(少) •二类:0.25% 手续费(主流币) •其他类:0.85% 手续费(杂币) → Boost 积分加成:分别是 0 / 0.25 / 1 → 理论上“其他类”刷起来更划算,但二类币更稳 二、利润测算 以第一期 $LINEA 为例(奖池 1.6 亿枚,价值约 450 万美金): •单分价值 ≈ 50~70U •成本:手续费+点差,约 2~3U •结论:性价比极高 不过注意 :并不是刷得越多赚得越多。 根据推算: •3-6 档最优(性价比最高) •超过 512 分后,边际利润开始下降 三、实操策略 1. 余额 保持 ≥100U 稳定币或主流币,避免被卡门槛。 2.交易量 •推荐刷 第 3-6 档(128~512 U/天,来回交易),性价 比最佳。 •其他类币(如 $PUMP 等小币)磨损更低,但有流动性风险; •二类币(ETH、USDT、BTC 等)更稳。 3.交易习惯 •不要集中在某一天刷完,拉平均值; •不建议一个设备多号,防女巫; •平时就顺手做些低买高卖,顺便把 Boost 刷了。 四、参与流程 1.下载并创建 OKX Wallet 插件,保存助记词 🔗chromewebstore.google.com/detail/okx-wal… 2.绑定邀请码(省 20% 手续费) 🔗 web3.okx.com/ul/joindex?ref…(邀请码BTCETH888) 3.钱包充值 ≥100U 稳定币 & Gas 4.找合适的代币刷量(建议 128~512 U 档位) 5.活动结束后,手动领取奖励 五、最后的建议 不要只看明面门槛(10U/32U),实际竞争会抬高门槛 多关注下一期规则是否调整(余额要求可能上调) 稳扎稳打比盲目大额更划算 一句话总结: OKX Boost 刷 3-6 档,余额 100U+,刷交易量,就是目前最优解。

136k

Spark的四大战略支柱——能否真正引领DeFi进入下一个黄金时代? Spark( @sparkdotfi )代币自2025年6月17日在币安等交易所上线后,其未来规划聚焦于代币经济深化、跨链生态扩展、资本效率优化及治理去中心化四大核心方向。 📊一、代币经济与分配机制 1. 长期释放与激励设计 总量与释放节奏:SPK总供应量为100亿枚,采用10年线性释放机制:前2年每年释放10亿枚,之后每2年减半,直至2035年分配完毕。其中65%通过流动性挖矿分配,用户质押SKY或稳定币(如USDS)可获取SPK。 空投策略: -Ignition空投(2025年6月启动):覆盖约5万早期用户,奖励基于历史对SparkLend的参与或特定稳定币持有行为。 -预挖空投(PreFarm):追溯奖励历史借款人,例如向DAI/USDS借款人倾斜80%的空投份额,以维持协议TVL稳定。 质押经济:SPK支持质押获取协议30%的分红收益,未来将引入锁仓引擎(Lockstake Engine),鼓励长期治理参与。 2. 交易所整合与流动性提升 Binance、KuCoin、Gate等交易所于2025年6月17日同步上线SPK,并提供多样化支持: Binance:支持现货、杠杆(3x)、期货(25x杠杆)及Earn质押,首日交易量超18亿美元。 KuCoin/Gate:集成量化交易工具(如网格交易、AI策略),降低用户操作门槛。 Binance: 现货/杠杆/期货/Earn质押/HODLer空投+多杠杆衍生品       KuCoin :现货+量化工具 、AI趋势追踪、马丁格尔策略       Gate:Launchpool/理财/交易赛 ,年化12%的USDT理财加成   ⛓️ 二、跨链扩展与生态整合 1. 多链部署与RWA深化 当前覆盖:已部署以太坊、Arbitrum、Base等6条链,管理资产超55亿美元。 2025年重点: -RWA(现实世界资产)配置:目标将超10亿美元资金投入BlackRock的BUIDL、Superstate等代币化国债产品,提升收益稳定性。 -Cosmos生态扩展:通过定制链优化跨链资产流转,解决以太坊高Gas费瓶颈。 2. 资本效率工具创新 Spark流动性层(SLL):动态调整资产配置: 牛市:资金倾斜至高收益DeFi协议(如Morpho、Ethena),APY可达1525%。 低收益期:转向RWA及CeFi货币基金,维持612%基础收益。 衍生品对冲:通过Pendle等协议锁定利率,例如PTUSDS固定利率达10%,吸引超5400万美元TVL。 🗳️三、治理去中心化路线图 1. 阶段性权力移交 短期(2025年内):SPK持有者可投票调整协议参数(如借贷利率、抵押品类型)。 中期(2026年后): -脱离MakerDAO主网,迁移至专用链NewChain独立运行。 -启动SubDAO代币互换机制,增强SPK与Maker生态代币(如NewGovToken)的协同性。 ⚠️ 四、风险与挑战 1. 监管压力: RWA配置可能面临SEC对代币化资产的证券属性审查(如BlackRock BUIDL争议)。 2. 市场竞争: 收益聚合赛道已有Ethena(TVL 27.1亿美元)、Morpho(FDV 15亿美元)等成熟协议,Spark需通过算法优势差异化竞争。 3. 代币抛压: 早期空投占比高(Ignition+预挖占流通量12%),叠加交易所期货杠杆放大波动,短期价格承压。 💎总结:核心路径与关键节点 Spark的未来规划围绕 收益可持续性、跨链互操作性、治理独立性 构建: 短期(2025年):消化空投抛压,推动RWA合规落地,优化SLL策略对抗市场波动。 中期(2026年):完成NewChain迁移,实现SubDAO完全自治,深化Cosmos生态整合。 长期价值锚定:若SLL的动态平衡能力与NewChain落地效果符合预期,Spark有望成为连接DeFi高收益与RWA低波动的核心中间层,重塑链上资本效率范式。 @cookiedotfun #CookieDAO #SparkFi #cookiefun

2k

卧槽,Lighter的积分已经来到了1分100u,大家最近都在刷Perp dex,我还是强烈推荐大家去刷 @Lighter_xyz ,这融资阵容太强大了! 分享一下我的策略: 我的策略是多号+服务器上跑脚本+模拟真人操作流打法。 前期准备: 1. ads指纹浏览器:这个想必是个撸毛人都有 2.独立ip:独立ip主要是一个号配置一个ip防止女巫 3.vps服务器 4.Xterimal: 这是ssh工具,主要是搭建vps的 下载地址:xterminal.cn 5.脚本 我用的是 @yourQuantGuy 这位大佬的 脚本地址:github.com/your-quantguy/… 首先声明,用脚本会有女巫的风险,但是我们测试下来目前没有被女巫,另外一种就是对冲流打法,我只做分享。 教程如下:

47k

Decentralizing AI's Data Supply Chain: How Sapien is Building the Global Knowledge Layer for Trusted AI Training --The rebranding from @PlaySapien to @JoinSapien signifies the project's strategic evolution from a product-experience focus to an ecosystem-co-creation orientation—where "Play" emphasized tool functionality, "Join" highlights protocol-level participation, deeply aligning with core values of on-chain governance and contributor ownership. ✅Sapien's Solution Framework 1. Decentralized Data Production Protocol Core Innovation: A blockchainbased global knowledge network converting human expertise into structured AI training data at scale. Operational Mechanics: SkillMatching: Contributors undertake annotation, validation, and specialized AI tasks aligned with their expertise. TwoLayer Quality Control: Peer validation + onchain reputation auditing. Tokenized Incentives: Tiered reward structure (entrylevel → premium tasks) with staking mechanisms for yield amplification. 2. OnChain Trust Architecture Transparency Enforcement: Immutable recording of contributions, reputation, and payments. Structural Advantages: Historical contributor performance tracking Automated smart contract penalties/rewards Elimination of intermediary fees (2040% in traditional platforms) Protocol governance rights via token ownership 3. Token Economics ($SAPIEN) Staking Incentives:Priority task access & reward boosts Reputation System:Reputation tiers gate task levels Governance Rights:Parameter voting for token holders Value Conversion:1:1 redemption of alpha points at TGE ✅Commercial Validation Scale Proof: 100M+ AI tasks completed by 1.2M+ contributors during alpha. Enterprise Adoption: Serving Amazon, Midjourney, UN, and Toyota – validating enterprisegrade demand. Technical Evolution: Web2 Data Operations- > Hybrid Transition Architecture-> Full OnChain Protocol ✅Strategic Positioning 1. Reengineering Data Supply Chains Tackles legacy pain points: inefficient subcontracting, quality erosion, and unfair labor compensation in traditional data labeling. 2. Global Knowledge Liquidity Mobilizes localized expertise from emerging markets (Nairobi, Manila, etc.) to solve AI's longtail data needs. 3. AI Data Infrastructure Play Aims to become the foundational middleware for trustworthy AI training data. ✅Roadmap 2025 :Mainnet Launch • Token TGE • Enterprise Integrations 2026:Protocol Governance • Network Effects • Industry Standardization ✅Key Challenges Scalable Quality Assurance: Onchain verification under 100M+ task throughput Tokenomic Stability: Mitigating speculative staking behaviors Regulatory Compliance: Crossborder data/labor frameworks (GDPR, digital labor laws) ✅Conclusion Sapien pioneers blockchainenabled restructuring of AI’s data supply chain: Productivity Shift: Unlocks global latent human expertise for AI training. Ownership Revolution: Transforms contributors from labor to protocol owners. Infrastructure Value: Creates an antifragile, scalable data backbone for AGI development. Sapien represents a DePIN transformation of AI data supply chains. Its success hinges on achieving superior marginal cost structures versus centralized alternatives while maintaining verifiable data quality – positioning it as critical infrastructure for nextgeneration AI. @cookiedotfun @JoinSapien #CookieDAO #Sapien #SPN #SapienAI #JoinSapien

1k

继Perp DEX之后,我觉得下一轮财富效应一定会在预测市场赛道中爆发! 预测市场有那些潜力项目,我整理了一下市面上有融资的和各链的预测市场项目,汇总了10大潜力项目! 1️⃣Polymarket @Polymarket 所属网络:Polygon 融资:总融资约27亿美元,估值90亿美元 推荐系数:★★★★★ Polymarket 是全球最大的去中心化预测市场,覆盖政治、体育及加密事件,月交易量已突破10亿美元。凭借与ICE(NYSE母公司)的合作,Polymarket正逐步稳固其市场领导地位。 2️⃣Kalshi @Kalshi 融资:总融资超5.15亿美元,估值50亿美元 推荐系数:★★★★ 作为CFTC监管的事件合约市场,Kalshi专注于政治、经济及体育事件的预测。其跨越140多个国家的全球扩展,以及与顶级投资者的合作,使其具备了巨大的成长潜力。 3️⃣Limitless @trylimitless 所属网络:Base 融资:总融资700万美元+社区承诺2亿美元 推荐系数:★★★★ Limitless 提供了一个基于Base链的全新预测市场平台,支持加密、科技和体育领域的预测。凭借Coinbase Ventures的支持和强大的资本背景,它成为了值得关注的潜力股。 4️⃣Numerai @numerai 融资:总融资1750万美元 推荐系数:★★★★ Numerai结合了AI与预测市场的优势,通过机器学习预测股票市场。它的量化平台吸引了大量数据科学家和投资者,是创新与技术的结合体。 5️⃣The Clearing Company @theclearingco 所属网络:EVM 融资:融资1500万美元 推荐系数:★★★★ 该平台致力于提供一个监管友好的链上预测市场,竞争对手为Kalshi和Polymarket,具备强大的团队背景和良好的市场前景。 6️⃣Talus Labs @Talus_Labs 所属网络:Sui 融资:总融资超1000万美元 推荐系数:★★★★ Talus Labs利用AI技术和去中心化的优势,构建了一个创新的预测市场平台,预计将在2026年Q1上线,值得期待。 7️⃣Topl @topl_protocol 推荐系数:★★★ Topl是一个专注于可持续性和供应链事件预测的区块链平台,具备强大背景支持,虽然融资信息未公开,但其潜力不容忽视。 8️⃣Opinion @opinionlabsxyz 所属网络:BSC 融资:融资500万美元 推荐系数:★★★ Opinion旨在构建一个社交网络内的观点市场,确保观点在数字领域得到认可。它的社交层次使得其独具吸引力,尤其对于想要参与数字讨论的用户。 9️⃣Hedgehog Markets @HedgehogMarket 所属网络:Solana 融资:融资300万美元 推荐系数:★★★ Hedgehog Markets 提供去中心化的预测市场,支持AMM和点对点投注。它的低融资门槛和Solana生态的优势使其成为新兴平台。 🔟Melee Markets @meleemarkets 所属网络:Solana 融资:融资300万美元 推荐系数:★★★ Melee Markets让任何人都能创建预测事件市场,其开放性和易用性使其成为一个值得关注的项目,特别适合喜欢定制化市场的用户。

39k

Snaps +0.21 Ranking 186 I'm very grateful that you have added points for me again @cookiedotfun ------------------------------------------------------- The Loyalty Revolution in DeFi: How Spark( @sparkdotfi ) Overdrive Reinvents User Engagement Through Airdrop Economics While Challenging Traditional Financial Trust Paradigms ✅I. Overdrive Airdrop Phase 2: Mechanism Design & Participation Strategy 1. Core Objective: Activating LongTerm Stakers Unclaimed Airdrop Redistribution: Reallocates unclaimed tokens from Phase 1 (Ignition) to incentivize sustained SPK staking. AntiDumping Mechanism: 14day lockup period (July 29  August 12 UTC) mitigates postlisting sell pressure. 2. Participation Rules Deep Dive Critical Constraints: Eligibility limited exclusively to Ignitionairdropped SPK Stablecoin holdings only amplify unit counts without altering staked SPK 3. Risk Hedging Architecture Compressed Timeframe: 14day window minimizes market volatility exposure Zero Cooldown: Instant unstaking permitted (with forfeited rewards) balances flexibility and protocol stickiness > This mechanism counters "airdrop farming" by converting mercenary users into ecosystem contributors while curbing circulating supply inflation. ✅II. Spark Protocol Essence: DeFi Native vs. Traditional Banking 1. Foundational Logic: Code Trust > Institutional Trust 2. Regulatory Arbitrage & Compliance Boundaries Banks: Bound by Fed capital requirements + mandatory KYC/AML Spark: No banking licenses across jurisdictions Proactive US user geoblocking (2023) to evade SEC scrutiny Explicit disclaimers at `spark.fi/mica`: "Nondeposit · No principal protection · Uninsured" 3. Yield Generation: Algorithmic Markets vs. Administered Rates Bank Rates: Central bank benchmarks + institutional spreads Spark's DSR: Simplified Rate Model (SparkLend Core) function calculateDSR() public view returns (uint256) { uint256 utilization = totalBorrows / totalDeposits; return utilization > 0.8 ? baseRate + 5% : baseRate; } Historical case: EDSR peaked at 8% (2023) before arbitragedriven normalization to 5% 4. Governance: Shareholders vs. Tokenholders Bank Decisions: Board resolutions + shareweighted voting Spark Upgrades: Onchain SPK holder voting MakerDAO's veto power—exposing SubDAO security dependencies ✅III. DeFi's Irreversible Paradigm Shift Spark's Overdrive relock strategy epitomizes converting liquidity subsidies into protocol loyalty, while its nonbank nature reveals DeFi's core disruption: > "When yield stems from mathematicallyverifiable code—not institutional credibility—finance evolves from trusting intermediaries to trusting opensource infrastructure." Yet regulatory arbitrage faces sunset: MiCA compliance may demand offchain legal entities, though Spark's chainnative operational core remains immutable. #CookieDAO #SparkFi #cookiefun #Spark

2k

Sapien如何通过专业化数据标注与人工验证,成为AI模型训练的关键基石? Sapien(网站:[sapien.io])是一个专注于高质量数据标注和人工验证的平台,旨在为AI和机器学习模型提供可靠的训练数据。谈一下Sapien( @PlaySapien ) 对AI领域的主要贡献及其任务结构的总结: 1. 高质量数据标注 贡献: Sapien通过专业化的众包劳动力(包括领域专家和经过培训的标注员)为AI模型提供精准的标注数据,覆盖文本、图像、视频和音频等多种数据类型。 任务结构: 标注类型:包括分类、实体识别、语义分割、目标检测、语音转写等。 质量控制:通过多级审核、共识机制(多个标注员独立标注同一任务)和自动化验证工具确保数据质量。 领域适配:针对医疗、法律、自动驾驶等垂直领域提供定制化标注服务。 2. 人类反馈强化学习(RLHF) 贡献: Sapien为大型语言模型(如GPT、LLaMA等)的微调提供人类偏好数据,帮助模型对齐人类价值观和意图。 任务结构: 偏好排序:标注员对模型输出的多个回答进行质量排序。 生成评估:评估回答的流畅性、事实准确性、安全性等。 对抗性测试:设计边缘案例(edge cases)以发现模型缺陷。 3. 多模态数据处理 贡献: 支持跨模态(文本、图像、语音)数据的联合标注,推动多模态AI(如视觉语言模型)的发展。 任务结构: 跨模态关联:例如为图像生成描述性文本,或为视频添加时间戳标记。 复杂场景理解:标注自动驾驶中的3D点云数据或医疗影像中的病变区域。 4. 对抗性数据收集 贡献: 通过构建具有挑战性的测试案例,帮助提升AI模型的鲁棒性和安全性。 任务结构: 对抗性样本生成:标注员设计可能误导模型的输入(如模糊图像、歧义文本)。 红队测试(Red Teaming):模拟恶意用户行为以测试模型漏洞。 5. 本地化与全球化支持 贡献: 提供多语言数据标注服务,支持AI模型的全球化部署。 任务结构: 翻译与本地化:标注文化敏感的语境或方言。 语音数据收集:覆盖小众语言和口音。 6. 透明与合规的数据治理 贡献: 确保数据标注符合伦理和隐私法规(如GDPR),减少AI偏见。 任务结构: 去标识化处理:移除敏感个人信息。 偏见检测:标注员识别并标记可能带有偏见的数据。 技术架构与流程 Sapien的任务流程通常包括以下步骤: 1. 需求分析:与客户共同定义标注规则和标准。 2. 任务分发:通过平台将任务分配给合适的标注员(可能按专业领域筛选)。 3. 质量监控:实时监控标注结果,使用自动化工具(如一致性检查)和人工审核。 4. 交付与迭代:提供结构化数据集(如JSON、COCO格式)并支持后续优化。 总结 Sapien的核心价值在于通过人类智能的规模化组织,解决AI训练中的数据瓶颈问题,尤其在需要高精度或领域知识的场景中。其结构化任务设计和严格质量控制使其成为许多AI公司的重要数据合作伙伴。 -------------------------------------------------------- Sap Sapien's Contributions to AI and Task Structure Summary @PlaySapien (sapien.io )is a platform focused on high-quality data annotation and human verification, aimed at providing reliable training data for AI and machine learning models. Below is a summary of Sapien’s key contributions to the AI field and its task structures: 1. High-Quality Data Annotation Contribution: Sapien delivers precise annotated data for AI models through a specialized crowdsourced workforce, including domain experts and trained annotators, covering diverse data types such as text, images, videos, and audio. Task Structure: Annotation Types: Includes classification, entity recognition, semantic segmentation, object detection, speech transcription, etc. Quality Control: Ensures data quality through multi-level reviews, consensus mechanisms (multiple annotators independently label the same task), and automated validation tools. Domain Adaptation: Provides customized annotation services for vertical industries like healthcare, legal, and autonomous driving. 2. Reinforcement Learning from Human Feedback (RLHF) Contribution: Sapien supplies human preference data for fine-tuning large language models (e.g., GPT, LLaMA), helping align models with human values and intentions. Task Structure: Preference Ranking: Annotators rank the quality of multiple model outputs. Response Evaluation: Assesses fluency, factual accuracy, and safety of responses. Adversarial Testing: Designs edge cases to identify model weaknesses. 3. Multimodal Data Processing Contribution: Supports joint annotation of cross-modal data (text, images, speech), advancing the development of multimodal AI (e.g., vision-language models). Task Structure: Cross-Modal Association: For example, generating descriptive text for images or adding timestamps to videos. Complex Scene Understanding: Annotates 3D point cloud data for autonomous driving or lesion areas in medical imaging. 4. Adversarial Data Collection Contribution: Enhances AI model robustness and safety by creating challenging test cases. Task Structure: Adversarial Sample Generation: Annotators design inputs that may mislead models (e.g., ambiguous text, blurry images). Red Teaming: Simulates malicious user behavior to test model vulnerabilities. 5. Localization and Globalization Support Contribution: Offers multilingual data annotation services to support the global deployment of AI models. Task Structure: Translation and Localization: Annotates culturally sensitive contexts or dialects. Speech Data Collection: Covers low-resource languages and accents. 6. Transparent and Compliant Data Governance Contribution: Ensures data annotation complies with ethical and privacy regulations (e.g., GDPR) and mitigates AI biases. Task Structure: De-identification: Removes sensitive personal information. Bias Detection: Annotators identify and flag potentially biased data. Technical Architecture and Workflow Sapien’s task workflow typically includes the following steps: Requirements Analysis: Collaborates with clients to define annotation rules and standards. Task Distribution: Assigns tasks to suitable annotators (potentially filtered by domain expertise) via the platform. Quality Monitoring: Tracks annotation results in real-time using automated tools (e.g., consistency checks) and human reviews. Delivery and Iteration: Provides structured datasets (e.g., JSON, COCO formats) and supports subsequent optimizations. Summary Sapien’s core value lies in its scalable organization of human intelligence to address data bottlenecks in AI training, particularly in scenarios requiring high precision or domain expertise. Its structured task design and rigorous quality control make it a key data partner for many AI companies . @cookiedotfun #CookieDAO #Sapien #SPN #PlaySapien

2k

Value Reconstruction in Distributed Systems: The Convergence of Spark( @sparkdotfi )'s Technical Architecture and Financial Engineering > When traditional distributed systems deeply integrate with financial engineering, Spark ceases to be merely a computational framework or a DeFi protocol—it becomes a crossdomain synergy engine redefining data value and capital efficiency. At the intersection of big data and blockchain, Spark is quietly orchestrating a dual revolution: it is both a technological innovator in distributed computing and a paradigm disruptor in decentralized finance. ✅I. Paradigm Shift in Technical Architecture: From Computational Speed to Intelligent Resource Allocation 1. HighDimensional NoiseResistant Optimization: The Engineering Philosophy of NoRTune Spark faces a "highdimensional maze" problem—traditional tuning of 150+ dynamic configuration parameters resembles "blind men feeling an elephant," constrained by: High sample requirements Dimensionality selection challenges Performance noise interference The Korean team’s NoRTune framework breaks through with two innovations: Nonlinear Subspace Bayesian Optimization (NSBO): Maps 150+ dimensions to a 20D subspace via random embeddings, eliminating dependency on target dimensions. In WordCount benchmarks, sample efficiency improves 3.8x. NoiseResistant Acquisition Function: An enhanced qExpected Improvement (qEI) combined with quantile regression increases configuration stability by 62%, effectively distinguishing real performance from noise fluctuations. This breakthrough overcomes the "curse of dimensionality" in Bayesian optimization, enabling adaptive exploration while reducing dimensions—a plugandplay tuning paradigm for cloud computing. 2. Isolated Debt Positions & eMode Overclocking: Embedding FinancialGrade Risk Control Spark Protocol’s core security innovation lies in its risk contagion prevention algorithm: Independent borrowing pools for each collateral asset (e.g., WBTC, ETH). If a pool’s collateral ratio falls below 120%, crosspool borrowing is automatically paused, improving system stability by 300%. eMode leveraged borrowing uses Balancer TWAP + Chainlink dual oracles, enabling 97% loantovalue (LTV) ratios for correlated assets (e.g., ETH/wstETH)—a 53% improvement over Aave V3. This modular risk isolation architecture prevents systemic failures (e.g., LUNAstyle cascading liquidations), embedding actuarial rigor into distributed systems. ✅II. OnChain Financial Engineering: Building ClosedLoop Capital Efficiency 1. The Deterministic Revolution in Stablecoin Yields Traditional DeFi stablecoin yields suffer from volatile interest rates and custodial risks. Spark’s solution: ERC4626 Savings Tokens (sUSDS): Fixedyield mechanisms backed by: Cryptocollateralized loan fees U.S. Treasury investments Crossprotocol liquidity allocation SkyLink Liquidity Layer (SLL): Automated crosschain routing (Base, Arbitrum) via Circle’s CCTP ensures deep liquidity. This transforms stablecoin yields from speculative market behavior into predictable protocollevel infrastructure, improving task efficiency by 14.13% in HiBench tests. 2. Deflationary Tokenomics: A ThreeLayer Burn Mechanism SPK’s tokenomics counteract airdrop inflation via: Fee Burning: 25% of platform revenue buys back and burns SPK (~8% annual reduction at $37M daily volume). Utility Locking: SPK holders get 60% fee discounts; stakers earn 75% of protocol revenue (~7% APY). Governance Power: Voting rights cover critical parameters (e.g., new collateral types). This model directly addresses airdrop flaws—value leakage to passive holders—by tightly coupling token value with protocol activity. ✅III. CrossDomain Synergy: Challenges and Prospects 1. The TechFinance Validation Dilemma Latency Mismatch: Distributed computing relies on RDD replay (minutes), while DeFi liquidations require subsecond responses. Noise Definition Clash: Computational noise (I/O jitter, GC pauses) ≠ financial noise (oracle deviations, flash loan attacks). 2. Regulatory Tech (RegTech) Adaptation Under EU’s MiCA, derivative protocols must adjust margin requirements. Spark must build a dynamic compliance layer: Plugandplay KYC modules Realtime risk exposure dashboards Regulatory sandbox interfaces 3. AIDriven Capital Efficiency Flywheel Spark is exploring MLoptimized yield routing: 2025 Q4 Liquidity Aggregator: Reinforcement learning dynamically allocates capital across Aave, Morpho, etc. NoRTune Expansion: Extends parameter tuning from compute resources to interest rate curves. ✅A New Paradigm for Distributed Value Exchange Spark’s dualtrack evolution reveals a deeper trend: distributed systems are evolving from "data processors" into "value exchange infrastructures." Its core innovation lies in three convergences: 1. Temporal Fusion: Batch processing (RDD fault tolerance) + streaming (realtime liquidations). 2. Spatial Fusion: Compute optimization (NoRTune) + capital optimization (SLL). 3. Risk Fusion: Technical noise suppression (qEI) + financial risk isolation (independent pools). Spark’s future hinges on balancing technical rigor with financial innovation. If it succeeds in crossvalidation, regulatory adaptation, and AI synergy, it could become the first "computeasfinance" protocol—where data processing doesn’t just move information, but redefines capital efficiency. > When Korean engineers debug NoRTune’s Bayesian sampling, they don’t realize the same code optimizes milliondollar stablecoin rates on Base. When MakerDAO designs isolated vaults, they don’t foresee their risk logic reshaping Spark’s parameter tuning—yet in this collision of tech and finance, the future of value flow is being rewritten. --------------------------------------------------- 分布式系统的价值重构:Spark协议的技术架构与金融工程融合之路 > 当传统分布式系统与金融工程深度耦合,Spark不再仅是计算框架或DeFi协议,而成为重构数据价值与资本效率的跨领域协同引擎。 在大数据与区块链的交叉地带,Spark正悄然进行一场双重革命:它既是分布式计算框架的技术革新者,也是去中心化金融的范式颠覆者。 ✅一、技术架构的范式突破:从计算加速到资源智能配置 1. 高维抗噪调优:NoRTune框架的工程哲学 Spark面临的“高维迷宫”困境——超过150个动态配置参数的传统调优如同“盲人摸象”,样本需求高、维度选择难、性能噪声干扰形成三重约束。韩国团队提出的NoRTune框架通过两大创新破局: 子空间贝叶斯优化(NSBO):利用随机嵌入技术将150+维参数映射到20维子空间,避免传统方法对目标维度的依赖,在WordCount等测试中样本效率提升3.8倍 抗噪采集函数:改进的qEI(Expected Improvement)函数结合分位数回归,使配置建议稳定性提升62%,有效区分真实性能与噪声波动 这一设计突破贝叶斯优化的维度诅咒,实现“边探索边降维”的自适应过程,为云计算环境提供开箱即用的调优范式。 2. 隔离借贷仓与eMode超频:金融级风控植入计算内核 Spark Protocol的核心安全创新在于风险传染阻断算法: 每种抵押资产(如WBTC、ETH)拥有独立借贷池,当特定池抵押率跌破120%阈值时,自动暂停跨池组合质押功能,将系统稳定性提升300% eMode超频杠杆通过Balancer TWAP与Chainlink双预言机校验,允许在关联资产(如ETH/wstETH)上实现最高97%抵押率,较Aave V3提升53% 这种模块化风险隔离架构,使Spark避免类似LUNA崩盘的全局清算风险,将金融工程的精算思维植入分布式系统底层。 ✅二、金融工程的链上实现:构建资本效率的闭环系统 1. 稳定币收益的确定性革命 传统DeFi稳定币收益面临根本矛盾:浮动利率的不可预测性与中心化托管的风险性。Spark的破局点在于: ERC4626储蓄代币(sUSDS):基于Sky治理设定的稳定收益机制,收益来源包括加密货币抵押贷款手续费、美国国债投资及跨协议流动性配置 流动性层(SLL)自动化跨链路由:通过SkyLink桥接Base和Arbitrum等网络,实现多链收益同频化,USDC流动性采用Circle跨链协议确保深度流动性 这一设计将稳定币收益从市场投机行为转化为可预测的协议级基础设施,在HiBench测试中任务效率最高提升14.13%。 2. 代币经济的通缩引擎设计 SPK代币经济模型通过三层消耗机制对抗空投通胀: 手续费销毁:25%平台收入用于回购销毁,日均3700万美元交易量下年销毁量达流通量8% 效用绑定:持币享受60%交易费折扣,质押分享75%协议收益(年化约7%) 治理赋权:投票权覆盖新增抵押资产类型等关键参数调整 这种设计直击空投分发模式的核心痛点——价值外流至被动持有者,通过强消耗场景将代币价值与协议活性深度绑定。 ✅三、跨领域协同的挑战与前景:当技术架构遇见金融工程 1. 技术金融的交叉验证困境 延迟敏感性错配:分布式计算容错依赖RDD重放机制(分钟级),而DeFi清算需秒级响应,时态鸿沟亟待弥合 噪声定义冲突:计算性能噪声(I/O波动、GC停顿)与金融噪声(预言机偏差、闪电贷攻击)需差异化处理框架 2. 监管科技(RegTech)适配 欧盟MiCA法案对衍生品协议的保证金披露要求,可能强制调整eMode杠杆参数。Spark需构建动态合规层: 可插拔KYC模块 实时风险敞口仪表盘 监管沙盒交互接口 3. AI驱动的资本效率飞轮 Spark正探索机器学习优化跨协议收益路径: 2025年Q4上线流动性聚合器,通过强化学习动态平衡Aave、Morpho等协议的资本配置 基于NoRTune框架的扩展,将参数调优从计算资源延伸至利率曲线校准 ✅分布式价值交换的新范式 Spark的技术金融双轨演进揭示了一个更深层趋势:分布式系统正从“数据处理工具”蜕变为“价值交换基础设施”。其核心创新在于三重融合: 时间维度融合:批处理(RDD容错)与流处理(实时清算)的统一架构 空间维度融合:计算资源优化(NoRTune)与金融资源优化(SLL)的同构映射 风险维度融合:技术噪声抑制(qEI函数)与金融风险隔离(独立借贷池)的协同设计 未来Spark的成败将取决于其能否维持技术严谨性与金融创新性的精密平衡。若能在跨域验证、监管适配、AI协同等方向持续突破,或将成为首个实现“计算即金融”的分布式价值协议——数据处理不只是信息的搬运,更是资本效率的重新定义。 > 当韩国工程师调试NoRTune的贝叶斯采样算法时,不会想到同一行代码正优化着Base链上百万美元的稳定币利率;而MakerDAO团队设计隔离借贷仓时,亦未预料其风控逻辑将改写Spark集群的参数调优哲学——技术架构与金融工程的碰撞,终将重塑价值的流动轨迹。 @cookiedotfun #CookieDAO #SparkFi #cookiefun #Spark

1k

请注意!请注意!请注意! 这里有一些@vultisig打新的细节 $VULT CA:0xb788144DF611029C60b859DF47e79B7726C4DEBa 链:ETH 主网 接受资产:USDC Uniswap Vultisig 专用网站: launch.vultisig.com/swap 10 月 27 日 8:00 UTC:Kaito Snapshot(前 300 名获得 WL) 10 月 27 日 12:00 UTC:WL 阶段开启(第 1 小时:最高买入价 1000 美元,第 2-24 小时:最高买入价 10000 美元) 10 月 28 日 12:00 UTC: $VULT公开发布 起始资金为 300 万美元,以 FCFS 方式启动(购买的人越多 = 价格上涨越多) 同时榜上的别忘记去talk.vultisig.com绑定钱包 绑定钱包之后验证会出现 “WL Ready”的标识

20k

大的要来了, @sparkdotfi 今日TGE上线币安Alpha和币安HODLer, @cookiedotfun 官方说spark积分活动并没有结束,抓紧时间把握最后的机会,这下1分=100u稳了吧! 为什么@sparkdotfi不是银行:分析 DeFi 平台与传统银行的根本差异 去中心化金融(DeFi)的兴起模糊了传统金融服务的界限,但 DeFi 平台与银行在本质上截然不同。以 Spark 协议(@sparkdotfi)为例,其去中心化的运营模式、缺乏监管以及服务逻辑与传统银行完全不同。本文基于公开信息和协议条款,系统性地阐述 Spark 的非银行性质。引言 1. 运营逻辑:去中心化 vs. 中心化 银行的核心特征 传统银行(如摩根大通)依赖中心化结构: -由单一实体控制,通过分支网络运营; -用户需信任银行作为资产托管人和交易中介。 Spark 的 DeFi 特性 作为一个区块链原生协议,Spark 完全去中心化: -智能合约驱动:借贷、储蓄等服务通过代码自动执行(例如,SparkLend 的 35.5 亿美元总锁仓价值(TVL)完全由合约管理); -无中介:用户直接与链上协议交互,无需依赖 Spark 团队。 2. 监管状态:无许可 vs. 高度监管 银行的合规义务 -受中央银行和金融当局的严格监管(如美联储的资本要求、中国的《商业银行法》); -必须遵循 KYC(了解你的客户)和 AML(反洗钱)程序。 Spark 的“监管真空” -该平台未在任何司法管辖区注册,不受金融监管机构监督,也不提供银行或经纪服务。 3. 服务模式:链上原生 vs. 传统金融 -Spark 储蓄允许用户直接存入稳定币以赚取利息,而银行储蓄需开设账户并受监管利率限制。 4. 关键证据链 技术实现 -DeFiLlama 数据显示,Spark 的 TVL 完全来自链上合约,没有实体资产托管。 社区治理 -利率调整等决策通过 DAO 投票进行(例如,MakerDAO 对 Spark 的影响),与银行董事会治理无关。 规避监管 -2023 年,Spark 限制美国用户访问,进一步确认其规避银行类监管的立场。 DeFi 协议 ≠ 银行 Spark 本质上是部署在以太坊上的智能合约集合,其价值源于代码的可靠性,而非机构信任。尽管它提供与银行相似的“存款和借贷”服务,但其去中心化架构、监管豁免和链上原生操作使其与传统银行存在代际差异。随着监管趋严,类似平台的合规性可能成为未来焦点,但其底层逻辑与银行始终存在根本区别。 #CookieDAO #SparkFi #cookiefun

1k

大的要来了,Hana官宣奖励前1000yappers! 昨天Hana( @HanaNetwork )经过社区的反馈,决定把原来的奖励1.5%给Kaito( @KaitoAI ) 前100yapper改成现在的奖励前1000yapper,赶紧抓住最后的机会! 【代币经济学】 目前还没有公布空投细节,,总代币10亿HANA 社区51% -生态系统增长 30%:Cliff 12 个月,Vesting 12 个月 -激励 16%:用于追溯奖励、空投和初始流动性。空投将分阶段发放。 -预售 5%:100% TGE 解锁。 团队19% Cliff 24个月,Vesting 24个月 金库20% 这是为未来使用而保留的,包括生态系统开发、流动性供应/做市、营销、审计、运营成本以及确保协议的财务稳定 投资者10% 【空投预期】 Hana总融资600万美元,估值2500万-1亿美元,总代币10亿,奖励1.5%给前1000yapper,也就是1500万代币,按照估值2000万来算就是37.5万美元,但我感谢实际没有这么多,最多30万美元,那大概每人300u。按TGE销售价0.04$,那么会更高,但是不要抱太大的预期。 【空投快照】 未来大部分空投将分发给 Capsule Shop NFT 持有者。 Hana 快照已结束,顶级参与者可以作为 NFT 白名单成员从 Capsule Shop 铸造,记得当时参与的早,然后玩游戏攒积分可以铸造一个nft,这个应该是空投凭证,希望有所回报! #HanaNetwork #KaitoAI #HANA

687

Sidekick Labs的奇幻旅程 2022–2023:直播“陪玩”系统起步 – Sidekick Labs( @Sidekick_Labs )最初并非典型的区块链项目,而是一个针对游戏直播主播的SaaS工具。创始人Jonny Fish曾任互联网咖啡厅和游戏服务商负责人,利用东欧低成本主播资源拓展业务。因应俄乌战争期间欧盟对东欧支付通道的限制,团队在2022年开发了一套直播陪玩系统,让主播能快速通过加密货币收款、送礼互动等。这个「第一个版本的Sidekick」帮助主播解决支付难题,据报道上线后发展迅速,“当时一个月流水超过1000万美元”(约合上亿元人民币)。官方路线图显示,旧版产品曾实现160万+月度交易量,链上交易超过110万次,积累了超过270万社区用户和9.1万活跃主播。这一阶段,Sidekick更像是一个注重解决主播“最后一公里”问题的Web2产品。 2024年:迈入Web3与大转折 – 2024年初,一通来自币安的邀请电话成为Sidekick的“神奇开关”。Jonny回忆最初以为是诈骗电话,但确认后决定加入BNB链的MVB项目。此后,Sidekick正式进军Web3直播领域。早在8月,币安公布将Sidekick列入BNB链第七季MVB加速器,Binance Labs(即YZi Labs)对其进行了投资。这一年里,Sidekick也获得了包括HashKey Capital、Fenbushi、Mirana Ventures、Foresight Ventures、Altos Ventures等著名机构的千万级美元融资。团队由Web2背景的直播专家组成,已在亚洲市场取得初步成果,吸引了1000+位加密直播KOL入驻。Jonny风趣地把自己定位为“首席搞笑官(Chief Joke Officer)”,强调创始人的使命是输出内容和价值,让团队明确方向。 同时,Sidekick也迅速改造产品定位,从单纯的加密支付工具,转向融合直播与交易的新平台。2024年9月,随着全球政治局势变化,团队决定开发全新的直播交易产品,经过数月调研后于11月推出视频直播新功能,这是Sidekick的重要里程碑。这标志着Sidekick由工具型产品正式升级为Web3直播交易平台,也就是后来常说的“LiveFi”平台。此时,Sidekick已经支持BNB链、Solana、Base等多条主链,积累了丰富的游戏主播资源和粉丝群体。 2025年:LiveFi平台崛起与代币发布 – 进入2025年,Sidekick进入高速成长轨道。2月,Sidekick宣布完成新一轮千万美元融资,并与东欧最大直播平台Trovo.live(3千万用户,150万主播)达成战略合作。官方披露Sidekick已通过Discord社区汇聚了1万+传统游戏主播,覆盖1800万粉丝,并在Telegram发布端用户超过1900万,还拿到了TikTok海外直播许可。 4月4日,Sidekick推出公开Beta版本,正式引入“LiveFi(直播金融)”理念。此时,Sidekick平台功能日趋完善:直播间集成了即时加密交易、打赏空投、内容解锁等功能,让观众在观看的同时能“即看即交易”。官方数据显示,短短两个月内已有700多位主播加入直播中心,日均最高观看量突破16.8万人次。这一阶段,Sidekick既是一款完整的独立应用,也开始构建自己的创作者经济体系。 2025年8月:K代币与基金会成立 – 随着社区规模扩大,Sidekick于2025年8月6日宣布成立Sidekick基金会,推出原生治理代币$K。总发行量为10亿枚,初始流通量约为11.13%,$K将用于实时打赏、订阅激励、内容解锁和社区治理等场景。官方公布的代币分配方案为:生态增长20%、社区长期激励20%、流动性激励4%、基金会16%、顾问5%、核心贡献者15%、投资方20%。此外,Sidekick在币安Alpha上做空投活动,未来还计划上线更多交易所,逐步推进代币生态的落地。正如业内评价所说,Sidekick已经从最初的直播陪玩工具,成长为一个模块化LiveFi平台,致力于将直播与链上交易无缝融合,成为项目方、创作者与观众共同驱动新生态的核心组件。 2023年:Sidekick平台前身正式上线,为主播提供加密支付与陪玩服务;月流水曾超1000万美元。 2024年3月:加入BNB链MVB,加快转型Web3,获得Binance/YZi Labs等投资。 2024年11月:推出整合直播与交易的新功能,正式向LiveFi平台转型。 2025年4月:公开Beta发布,LiveFi生态正式启动。 2025年8月:Sidekick基金会成立,原生代币$K发布(10亿总量),并启动社区激励计划。

977

不要错过 OKX #Boost 早期机会,散户的翻身机会! OKX Boost:第一期单分价值 50–70U,轻松 300–500U 回报 关于 OKX Boost 的两件事,先听我一句:别把策略交给侥幸 第一:门槛会变。别指望一直卡在那次活动的“最低档”就万无一失——第一期是 交易量$32,余额$10 、下一期就可能变成 $64 或 $128,建议每一个号至少放100u+。稳妥的做法是把预算往中位靠拢,别把全部希望押在“最低门槛”上,流动性、参与人数都会影响下一轮的分档规则。简单来说:别赌运气,要为更高门槛留点余地。 第二:关于“女巫”别太恐慌,但也别当没事。少量、出于正当用途的多个钱包是合理的,但一旦出现大量高度同质化、同步化的操作,官方风控肯定会注意。我的建议是:以合规为前提,避免把所有号做成“同一模板”;资金来源真实、使用场景合理,这样即便有人说“会不会被抓女巫”,你也能堂堂正正地解释自己的操作。记住——官方是想留住真实用户。 要是实在怕女巫那就做好隔离,每一个手机一个号,钱包之间做好资金隔离,钱包之间不要互转。 还没参与的兄弟可以来参与,现在还在早期,早期肯定还有利润,别等到时候看别人上车了,时间却晚了。 同时参与的兄弟也可以来刷linea交易赛,实现一鱼多吃 时间还有12天,刷交易积分的同时说不定还可以拿到Linea空投。 参与方式: 绑定邀请码【BTCETH888】,自动减免 20% 手续费: web3.okx.com/join/BTCETH888 可以看看注意事项:x.com/garciaisabel60… 完整参与教程: x.com/garciaisabel60…

6k

Sapien is pioneering a decentralized protocol that bridges human expertise with AI development through innovative tokenomics and blockchain technology. ✅1. Core Product: Decentralized Data Labeling Platform HumanDriven AI Training: Sapien connects global experts with enterprises needing highquality AI training data. Contributors perform tasks like image annotation or text classification, earning tokens for validated work . Gamified Participation: Features dynamic task systems, leaderboards, and NFTbased rewards to boost engagement and data quality . RealWorld Impact: -Accuracy: Achieves 99% data accuracy for clients like Alibaba and Midjourney . -Scale: 155,000+ contributors across 110+ countries, processing 2M+ data points . ✅2. Protocol Layer: BlockchainPowered Infrastructure MultiChain Integration: Built on Coinbase's Base L2 for lowcost Ethereum transactions . Partners with Matic Network (Polygon) to reduce costs/speeds by 100x . Key Technical Components: Token Incentives: Uses SPN tokens and stablecoins to reward contributors, with a PointstoToken conversion system . Reputation System: Onchain credentials track contributor expertise, enabling access to highervalue tasks . Forced Withdrawals: Ensures users can reclaim assets to L1 during emergencies, enhancing security . ✅3. Solving RealWorld AI Industry Problems Labor Shortages & Costs: Problem: 90% of AI companies face skilled annotator shortages; labeling costs often exceed $100k/project . Solution: Sapien's global talent pool reduces costs by 5070% while scaling on demand . Data Scarcity in Niche Domains: Problem: Medical/legal AI lacks expertvalidated datasets. Solution: Incentivizes domain experts. Centralization Risks: Problem: Tech giants monopolize AI data, leading to bias. Solution: Permissionless protocol ensures open access and diversity . ✅4. Tokenomics & Ecosystem Growth SPN Token Utility: Rewards for data labeling and referrals. Governance voting for protocol upgrades. Staking for premium task access . Strategic Partnerships: Worldcoin/Yield Guild Games: Expand contributor networks . Layer 2 Ecosystems: Base and Matic enable microtransactions for global payouts . Growth Metrics: 50% monthly user growth; $10.5M seed funding (Variant Fund lead) . ✅5. Future Vision & Challenges Roadmap: Launching "Data Foundry" for enterprise API access; expanding into RLHF (human feedback for LLMs) . Risks: Regulatory uncertainty for global crypto payments; competition from centralized AI labs Impact Potential: Democratizes AI development, enabling startups to compete with tech giants in model training . Sapien exemplifies how cryptonative systems can solve critical AI bottlenecks—turning fragmented human expertise into scalable, highintegrity data pipelines. Its success hinges on balancing token incentives with realworld utility to sustain a decentralized knowledge economy . @cookiedotfun @JoinSapien #CookieDAO #Sapien #SPN #SapienAI #JoinSapien

891

如何参与融资3300万美元的项目 ---Kite AI ? Kite AI 是一个专注于 AI 支付区块链的项目,背后有 PayPal Ventures 和 General Catalyst 等投资支持。它旨在打造代理互联网(agentic internet),为 AI 代理提供身份验证、权限治理和即时支付等核心功能。 1.官方信息 官推 @GoKiteAI@Kite_Frens_Eco 官方 Discord:discord.com/invite/kiteai 2.参与测试网 传送门:testnet.gokite.ai 3. 参与内容创作(UGC 活动):获得 Wind Runner SBT Kite AI 提供了 “Wind Runner” 计划,旨在奖励高质量、原创的内容创作者。通过创建与 Kite AI 相关的内容,你可以获得 SBT(分为三个层级)和其他奖励。 记得提交表单:kiteai.typeform.com/WindRunner 4. 参与开发者活动 传送门:openbuild.xyz

5k

People with Entrepreneur archetype

The Entrepreneur

Helping businesses with agentic AI to drive growth & revenue | Building audiencemx.com to amplify personal brands

210 following550 followers
The Entrepreneur

I write about Artificial Intelligence, Marketing, Sales, Freelancing, & Personal Branding

1k following803 followers
The Entrepreneur

💎 Alpha is Darkness let me Shine the Light ⚡️ I track Smart Money 🧠🧠 @Wise3Ventures @GoldenDegenClub @leftcurvedao @getmoni_io OG | Angel and Venture Scout

7k following1k followers
The Entrepreneur

提供国际站 阿里云|亚马逊云|谷歌云|腾讯云账号,可匿名代实名!支持USDT代充值!量大折扣多;找代理渠道合作联系:TG:t.me/Airida_Cloud

647 following114 followers
The Entrepreneur

Ecom / Pinterest Ads ⭕️ La communauté n°1 sur Pinterest Ads en France 🇫🇷 👇

523 following1k followers
The Entrepreneur

founder @darkresearchai, @mtndao

4k following28k followers
The Entrepreneur

链上小捕手| $Sol | 赚钱包养男大 | 我是最棒的小猪🐷 | #GemW 全链交易 faefrdpenn.com/zh_CN/register…

481 following5k followers
The Entrepreneur

Assistant Coach of the 2015 Atlanta Hawks || 102 IQ || Rt’d by @avax 10/18/25

2k following2k followers
The Entrepreneur

Enron summer intern '97 & FTX US Risk Management '22

1k following6k followers
The Entrepreneur

Founder @Railway, the fastest way to ship software. People, Product, Production.

1k following23k followers
The Entrepreneur

Founder ad agency @singlegrain, Investor. Member: @YPO Beverly Hills Podcaster: Marketing School, Leveling Up

3k following34k followers
The Entrepreneur

240+ Customers. 47 Clients Served. I Help Build Brands That Grow and Sell Offers on Autopilot. 240 mins work days.

321 following16k followers

Explore Related Archetypes

If you enjoy the entrepreneur profiles, you might also like these personality types:

Supercharge your 𝕏 game,
Grow with SuperX!

Get Started for Free